
The redshift of hydrogen lines in a strong magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 2251

(http://iopscience.iop.org/0305-4470/14/9/020)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 14 (1981) 2251-2258. Printed in Great Britain 

The redshift of hydrogen lines in a strong magnetic field 
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Department of Physics, Indian Institute of Technology, Bombay 400 076, India 

Received 5 February 1981, in final form 23 March 1981 

Abstract. We have analysed the low-lying energy levels of the hydrogen atom in a strong 
magnetic field. Isolation of the nearest singularity allows us to obtain expressions for energy 
levels in the strong-field limit. The resulting spectrum can simulate a redshifted hydrogenic 
spectrum and may have significant implications for astrophysical observations. 

1. Introduction 

The effect of a strong magnetic field on the energy levels of the hydrogen atom has 
acquired considerable importance in view of the possible existence r3f immensely large 
magnetic fields in astrophysical phenomena (Cohen et a1 1970, Kadomtsev 1970, 
Mueller eta1 1971). As such, the quadratic Zeeman shift in the hydrogen atom has been 
analysed in great detail, for the ground state and for some of the excited states (Avron et 
a1 1977, 1979, Cabib et a1 1972, Smith et a1 1972, Brandi 1975, Galindo and Pascual 
1976, Garstang 1977, Kanavi and Patil 1980). However, the general structure of the 
hydrogenic spectrum in a strong magnetic field is not yet well understood. 

It is known (Cohen et a1 1970, Kadomtsev 1970, Mueller et al 1971) that in the 
strong-field limit, the energy levels of the hydrogen atom are infinitely degenerate with 
respect to the z component of the angular momentum having values 0, -1, -2, . . . . In 
particular, it was shown by Hasegawa and Howard (1961) that the low-lying energy 
eigenvalues are, apart from the contribution of zy due to simple harmonic motion, 1 1/2 

for the ground state and 

for the excited states, with m denoting the degeneracy corresponding to the magnetic 
quantum number. They also showed that the excited states have an additional 
degeneracy of two corresponding to odd and even states for the motion in the z 
direction, and calculated the correction to the energies of the even states. They did not 
consider the odd states in any detail. The results stated above refer to the Hamiltonian 

(3) H=' 2 - - - 1 + 1  1 1/2 
Z P  8 Y ( X Z + Y 2 ) + 2 Y  Lz 

where atomic units (m = e = h = 1) have been used and y = c-*HZ and y = 1 cor- 
responds to a field strength of 2.35 X lo9 G. 
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Here, we calculate the corrections to the binding energies of the low-lying 
states, for a large but finite magnetic field. This is done by analysing the analyticity 
properties of E , , ~  as functions of the variable 

(4) p = 1. -112 
2Y ' 

We isolate the leading singular behaviour at p = 0 which allows us to calculate the 
leading finite-field correction to expression (2). It also provides insight into the 
structure of the energy levels. We find that the correction removes the degeneracy of 
the odd and even states and also the degeneracy of the magnetic quantum number for 
the odd states. The correction has n-3  dependence and can give rise to a redshifted 
Bohr spectrum. This raises an interesting possibility that some of the astrophysical 
redshifts may be due to the presence of strong magnetic fields. 

2. Analyticity properties 

For isolating the singular part of the energies, the analytic properties of the energy 
eigenvalues and the potential are crucially important. We first discuss the analytic 
properties of the effective potential. 

2.1. The effective potential 

The low-lying energy levels of the hydrogen atom in the presence of a strong magnetic 
field are given (Avron eta1 1977, Hasegawa and Howard 1961, Patil1980), apart from 
the simple harmonic contribution of ;y1", by the one-dimensional motion in an 
effective potential 

where m is the magnitude of the magnetic quantum number and p = &'I2 as defined in 
(4). This expression is the Coulombic potential averaged over the simple harmonic 
motion in the xy plane. Using the Fourier representation 

1 exp(ik er )  
d3k 

1 
-= lim 7 
r cr42.n s k 2 + p  

we obtain after carrying out the integrations 

where a = (4p)-'. This function is real analytic for real @ > 0 and satisfies the Schwarz 
reflection principle: 

Vm(P*r z ) =  VZ(P, 2). (8) 

2.2. Energy eigenvalues for real p > 0 

It is observed that 
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in which limit one has (Hasegawa and Howard 1961) energy eigenvalues (2) for even 
and odd eigenstates. For @ positive, since 

the energy eigenvalues satisfy the inequality 

(11) 1 -2 
s , , m ( P ) > - 2 n  

Furthermore, it is clear from the nature of the Hamiltonian (3) that the particle remains 
bound for all positive y, so that, by the Hellmann-Feynman theorem, one has 

which exists for real @ > 0. Thus, in this sense of the derivative existing, 
analytic for real @ > 0. 

is real 

2.3. Im E(@ + i s )  for P < 0 

Here we derive an expression for Im E(@ +is )  for @ < 0. For this, we begin with the 
relation 

( 2 dz2 

Multiplying the two sides by $*(@ +is,  z )  and integrating by parts, one obtains 

(13 
-- 1 -+Vm(p+i&,  d2 z ) ) ~ ( @ + i s , z ) = E ( @ + i s ) $ ( @ + i e , z ) .  

m 

Im E(@ +is) = dz Im V,(@ +is,  z ) ( $ ( @  +is ,  , ? ) I 2 .  (14) I_, 
In obtaining this relation, surface terms have been thrown away. This however is 
reasonable in view of the fact that for the potential under consideration, Vm(@, z ) +  
- l/lzi for / z /  + CO, and hence one expects the wavefunction to vanish at infinity. It is 
certainly true for @ + 0. 

We can easily deduce Im Vm(@ +is ,  z )  from equation (7), for @ < O ,  with which 
equation (14) leads to 

00 ) f o r p < O  I m E =  ( - l ) " p (  dz/$(@ +is,  z)I2 exp(-az2) 
d" 1/2 m + l  ~a 

m !  --p7 

(15) 

where a = (4@)-'. One could similarly obtain an expression for Im E(@ -k). It is 
observed, from equations (14) and (8), that 

Im E(@ -is)  = -1m E(@ + i s )  (16) 

,which suggests that @ = 0 is a branch point singularity of sn,"(@). 

2.4. Dispersion relations 

The preceding analysis indicates that E , , , ~ ( @ )  is analytic along the positive real axis but 
has a branch point at @ = 0; one can take the branch cut along the negative real axis. 
Hence with the assumption that there are no other singularities on. the first sheet away 
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from the real axis, one can write the dispersion relations 

Actually, our interest is primarily in separating out the leading singular behaviour at 
/3 = 0, which is unaffected by the contributions from singularities away from the origin, 
as also by the possible need for subtractions. 

3. Evaluation of ~ , , , ( p )  for /? + O  

It is now possible to isolate the singular behaviour of ( p )  at p = 0 by using dispersion 
relations (17 )  with Im + ie) obtained from equation (15) .  Indeed, since we are 
interested in the leading behaviour of Im + ie) for p + 0, we only need to know 
I,@ + ie, z )  for p + 0. These wavefunctions have been discussed by Haines and Roberts 
(1969),  but require careful handling since they form a continuum at p = 0. We consider 
the odd and even states separately. 

3.1, e,,,m ( p )  for odd states 

The states with the odd wavefunctions are relatively easy to handle since they form a 
discrete set at p = 0. The un-normalised odd wavefunctions for p = 0 are given by 
(Haines and Roberts 1969) 

where 

U = 2.214 

n takes values 1 , 2 , ,  . . . and 

( / - - r 1 ) ~ = ( l - n ) ( 2 - n )  . . . (  r - n ) ,  ( l - n ) o = l .  (20)  
With these wavefunctions we evaluate Im 
and obtain 

+ ie)  for p -0- from equation (15) ,  

Using this result in dispersion relations (17 )  and including expression ( 2 )  for the energy 
at p = 0 (this is equivalent to using once-subtracted dispersion relations), we obtain 

e n , , ( p ) ~ - : n - * ( 1 + 8 n - ’ ( m  + l)p In p )  (22 )  

where p = ;Y-’’~. The energy levels are seen to be raised for p # 0 in accordance with 
the general result (1 1). 

3.2. ~,,,(p) for even states 

The problem for the even states is greatly complicated by the fact that while for p # 0 
one expects the states to be discrete-this is certainly true for V ( z )  = -(It/ + p)- ’ ,  the 
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even states form a continuum (Haines and Roberts 1969) for p = 0. Hence it is not 
trivial to associate the discrete even states for /3 # 0 with the continuum even states for 
p =o. 

To be more definite, let us designate the wavefunction by +,,(~,,,,(p), p, z). The 
interesting point made by Haines and Roberts (1969) is that the even eigenstates 
( C / ( E , O , Z )  are admissible for all negative E except for E =E, , , , (O) .  We therefore 
prescribe that the correct limit of Im E , , ~ ( @  + iE) for p + 0 is obtained from equation 
(15) by the replacement 

(23) 

This is plausible in view of the fact that this retains the correct asymptotic behaviour for 
z +CO.  Also, it is found, a posteriori, that ( E ~ , ~ ( ~ ) - & ~ , ~ ( O ) )  is large compared with p. 
Furthermore, the correctness of this limit is verified explicitly for the potential V ( z )  = 
-(I21 +@)-I for which the wavefunctions are known (Haines and Roberts 1969). Now, 
one has (Haines and Roberts 1969) the un-normalised even solutions 

+ n ( E n , m ( P ) ,  P ,  z )+  + n ( & n , m ( P ) ,  092) for p + O  but p # 0. 

where CY = ( - - 2 ~ ~ , ~ ( p ) ) - ” ~ ,  and U and (1 -n)‘ are defined in equations (19) and (20). 
Using these wavefunctions, we evaluate Im for p + 0- from equation (15) and 
obtain 

The dispersion relations (17) then imply 

where we have shown the p dependence of CY explicitly. This is a self-consistency 
relation for p +. 0 and is satisfied for 

CY@) = n - 2/ln p for p + 0 (27) 

which then leads to 

where p = iy-1’2. As in the case of odd states, these levels are se,en to be raised for 
p # 0.  This expression is consistent with the quantum defect calculated by Hasegawa 
and Howard (1961). 

The analysis discussed can also be carried out for the ground-state energy E O , m .  In 
this case the wavefunction is 

Wdz) = exp (-lzl/a) (29) 

with which equation (15) gives 
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Using dispersion relations (17) as a consistency condition leads to 

where p = & Y - ~ ” ,  in agreement with the known result (1). 

4. Redshift of the spectrum 

We have shown that the energy levels of the hydrogen atom in the presence of a strong 
magnetic field are given by, to leading orders, 

n = 1,2 ,  . . . for even states 
4 

n 1nP (33) 

= p - ; ( l n  p y  for the ground state (34) 
where p = ;Y-”~,  and the simple harmonic energy has been included. The singular 
correction raises the energy levels of states with n = 1,2,  . . . which are non-degenerate 
for p # 0. 

It may be observed that since the shifts decrease faster than n-’, one set of the lines 
will be redshifted while the nature of the shifts of the other set will depend on the 
relative strengths of the shifts of the odd and even states. In view of this, we raise an 
interesting question: can some of the astrophysical redshifts be due to the presence of 
strong magnetic fields in stellar or galactic systems? This might be pertinent for the 
puzzle raised by the large redshifts in quasars. 

For a quantitative discussion of the energy levels for strong but finite fields, we note 
that the energy levels of the odd states are no longer degenerate with respect to the 
magnetic quantum number. However, if we assume that the transition probability is 
maximum for some value m = Fz, we may replace m by Fz for the purpose of describing 
the spectral lines. 

To be specific, let us consider the Balmer-like lines. The wavelengths of the lines 
predicted by equations (32) and (33), as discussed above, may be given by 

where b = 8(*+ 1)pIln pI and c = 4(/ln pi)-’. We apply this form to the hydrogenic 
Balmer lines observed for the quasar 3C273. The constants a and b are determined to 
be 

b = 2.573 x lo-’ 

c = 4.197 X 10-1 
(36) 

(37) 
so as to give the observed HP wavelength of 5632 A and H, wavelength of 5032 A. 
With these values of b and c, we predict 
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for Ha and H, lines which are in excellent agreement with the observed wavelengths of 
4753 A and 4595 A respectively. The agreement is comparable to that of the Doppler 
shift predictions which, however, are a one-parameter description. 

5. Discussion 

We end our considerations with some comments. 

for potentials of the type 
(i) Our analysis of separating the singular part of the energy levels can also be used 

In particular, for N = 1, one obtains 

n = 1,2,  . . . for odd states (41) E ,  = --( 1 1 4P w2 In p 
2n2 n n  

for n = 1,2,  . . . for even states 
E ,  = - -( 1 1 +-) 2 

2n n 1nP 
(42) 

E O  = -2(ln p)' for the ground state. (43) 

These results agree with those of Haines and Roberts (1969), but in addition contain a 
higher-order correction for the odd states. This gives us confidence in the essential 
correctness of our approach. A similar analysis has been carried out for the three- 
dimensional truncated Coulomb potential (Mehta and Patil 1978). It is worth pointing 
out that in the problems we have considered, we have exploited the fact that Im V(P, t )  
for P < 0 is easier to handle than the Re V(& z )  which simplifies the analysis. 

(ii) In the last section we described only the transitions to the odd n = 2 state. In 
general one has transitions to the even n = 2 state as well which may ultimately result in 
doublets of Balmer lines depending on the strengths of the transitions. 

(iii) If the magnetic field varies significantly from one part of the stellar or galactic 
body to another, the observed lines will acquire a linewidth. The spectral lines of 
quasars do indeed have linewidths of the order of 50 A. Variation in the direction of the 
magnetic field can also diffuse the polarisation of the emitted radiation. 

(iv) Our analysis has considered only the hydrogenic spectrum. Even if the quasar 
redshifts are not due to strong magnetic fields, it would be interesting to establish the 
existence of strong magnetic fields in astrophysical phenomena by identifying the 
redshifted hydrogen lines. 

(v) It should be noted that for large n, the Coulombic corrections in equations (32) 
and (33) become small. Hence our results may be applicable to atomic states with large 
n, even for moderate values of the magnetic field. 
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